Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties

نویسندگان

  • John E. Fischer
  • W. Zhou
  • J. Vavro
  • M. C. Llaguno
  • C. Guthy
  • M. J. Casavant
  • D. E. Walters
  • R. E. Smalley
  • J. E. Fischer
  • R. Haggenmueller
چکیده

Thick films of single wall carbon nanotubes ~SWNT! exhibiting in-plane preferred orientation have been produced by filter deposition from suspension in strong magnetic fields. We characterize the field-induced alignment with x-ray fiber diagrams and polarized Raman scattering, using a model which includes a completely unaligned fraction. We correlate the texture parameters with resistivity and thermal conductivity measured parallel and perpendicular to the alignment direction. Results obtained with 7 and 26 T fields are compared. We find no significant field dependence of the distribution width, while the aligned fraction is slightly greater at the higher field. Anisotropy in both transport properties is modest, with ratios in the range 5–9, consistent with the measured texture parameters assuming a simple model of rigid rod conductors. We suggest that further enhancements in anisotropic properties will require optimizing the filter deposition process rather than larger magnetic fields. We show that both x-ray and Raman data are required for a complete texture analysis of oriented SWNT materials. © 2003 American Institute of Physics. @DOI: 10.1063/1.1536733#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films

Dense, thick films of aligned single wall carbon nanotubes and nanotube ropes have been produced by filtration/deposition from suspension in strong magnetic fields. Electrical resistivity exhibits moderate anisotropy with respect to the alignment axis, while the thermopower is the same when measured parallel or perpendicular to this axis. Both parameters have identical temperature dependencies ...

متن کامل

Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube

In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...

متن کامل

Anisotropy in the X-ray absorption of vertically aligned single wall carbon nanotubes

Carbon nanotubes are archetypical one dimensional systems, with peculiar anisotropic electronic properties. Only recently μm thick films of vertically aligned SWNT became available. The vertical alignment of the nanotube mats allows the realization of scattering geometries promoting specific dipole transitions parallel and normal to the axis of the SWNT. We find well expressed mosaic spreads fo...

متن کامل

Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube

The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...

متن کامل

Alignment enhanced photoconductivity in single wall carbon nanotube films.

In this paper we report, for the first time, the alignment enhanced photoconductivity of single wall carbon nanotube films upon laser illumination. The photoconductivity exhibited an increase, decrease or even 'negative' values when the laser spot was on different positions between contact electrodes, showing a 'position' dependent photoconductivity of partially aligned films of carbon nanotube...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003